Un blog con cuestiones, ejercicios, problemas, aplicaciones y comentarios relacionados con los contenidos de Matemáticas del tercer curso de ESO
domingo, 24 de noviembre de 2013
Matemáticas de 3.º de ESO. Resolución de los ejercicios del segundo examen del primer trimestre
miércoles, 6 de noviembre de 2013
Proporcionalidad compuesta ( problema de muestra )
Enunciado:
Dos pintores, igualmente eficientes y trabajando a la vez, tardan $30 \; \text{min}$ en pintar un muro $6\; \text{m}^2$. ¿ Cuánto tiempo tardarían tres pintores ( igual de hábiles ) en pintar un muro de $25 \; \text{m}^2$ ?
Resolución:
Intervienen en este problema tres magnitudes: a) el tiempo empleado en hacer la tarea; b) el àrea del muro que se quiere pintar; y, c) el número de pintores que realizan la tarea ( sin entorpecerse unos a otros ).
Al intervenir más de dos magnitudes proporcionales, se nos plantea un problema de propocinalidad compuesta entre los siguientes pares de magnitudes: i) el timepo empleado y el n úmero de pintores (que es una relación p. inversa); y, ii) el tiempo empleado y el área a pintar (que és una relació de p. directa).
Resolveremos el problema mediante dos pasos encadenados (dos proporciones enlazadas), que son las siguientes:
  i)     Primero, calculamos el tiempo, $t_1$, que tardarían $3$ pintors (en lugar de $2$ pintores ) en pintar $6\; \text{m}^2$ de muro:
    $\dfrac{30}{\frac{1}{2}}=\dfrac{t_1}{\frac{1}{3}}$
y, de aquí, vemos que
    $t_1=20 \; \text{min}\quad \quad (1)$
  ii)     A continuación, calculamos cuánto tiempo tardarían tres pintores ( en lugar de dos ) en pintar $25 \; \text{m}^2$ ( en lugar de $25 \; \text{m}^2$ )
    $\dfrac{t_2}{25}=\dfrac{t_1}{6} \quad \quad (2)$
Finalmente, teniendo en cuenta [ de (1) ] que $t_1=20\; \text{min}$, sustituimos este primer resultado en (2) y encontramos que
    $t_2=\dfrac{25}{6}\cdot 20$
        $=83,\bar{3} \; \text{min}$
        $\approx 1\; \text{h}\;\;24\;\text{min}$
$\blacksquare$
Observación: Tipeo/esquema de resolución de la proporción compuesta:
Nota:     Una forma de notar el inverso de un número $a$ es $\text{inv}(a)=\dfrac{1}{a}$, que también se puede escribir de la forma $a^{-1}$. Ambas notaciones las hemos utilizado en este problema.
$\square$