Processing math: 100%

viernes, 7 de septiembre de 2012

Una persona va andando al trabajo ...

Enunciat:
Una persona que va a peu a la fenina, camina a una velocitat de 4 km/h. La distància de casa seva a la feina és de 1,5 km . Surt de casa a les 08:00:00 . Al mateix temps, el seu veí del pis de dalt, que fa el torn de nit, plega, i surt de la feina per anar-se'n cap a casa, caminant a una velocitat de 3 km/h . A quina distància de casa es creuearan? Quina hora serà?


Resolució:
Anomenant x a la distància de casa a la qual es trobaran, i t al temps que ha de passar (de del moment que surten) fins que es troben, podem plantejar el següent sistema d'equacions (de les proporcions respectives)

\left.\begin{matrix} \dfrac{4}{1}=\dfrac{x}{t}\\ \\\dfrac{3}{1}=\dfrac{1,5-x}{t}\\ \end{matrix}\right\}

De la primera equació

x= 4\,t

expressió que, posada a la segona equació (on figura la variable x) ens permet escriure
la següent equació (que és compatible amb les equacions del sistema original)

3\,t=1,5-4\,t

i, resolent-la, trobem

t=\dfrac{3}{14} \, \text{h} \approx 12 \, \text{min} \; \text{i} \; 51 \, \text{s}

Per calcular l'hora que serà quan es trobin, cal sumar aquesta quantitat que acabem de trobar a l'hora que han sortit (tots dos, simultàniament)

00:12:51 + 8:00:00 = 08:12:51

I, per determinar la distància x a la que es trobaran (mesurada desde casa seva), substituirem el valor de t que hem trobat en qualsevol de les equacions originals (la primera és més senzilla)

x=4 \cdot \dfrac{3}{14} \approx 857 \, \text{m}
\square

[autoría]

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios