viernes, 19 de junio de 2015

En un tramo recto de un canal de riego de sección cuadrada ...

ENUNCIADO
En un tramo recto de un canal de riego de sección cuadrada, cuya área es de $50 \, \text{dm}^2$, observamos una hoja de sauce flotando que, movida por la corriente, se desplaza a razón de $10 \, \text{m}$ cada $5 \, \text{s}$. ¿Que caudal de agua lleva el canal? ¿Cuánto tiempo tardaría en llenar una balsa de riego, inicialmente vacía, que tiene una capacidad de $5 \cdot 10^6 \, \text{L}$?

SOLUCIÓN
En un intervalo de $5 \, \text{s}$, podemos considerar un elemento de volumen de agua ( que transporta el canal ), en forma de prisma recto, cuya base cuadrada tiene un área de $50 \, \text{dm}^2$, y cuya arista longitudinal ( en la dirección de la corriente ) mida $10 \, \text{m}$, esto es, $100 \, \text{dm}$; entonces el volumen de dicho elemento es de $50 \cdot 100 = 5000 \, \text{dm}^3$, por tanto, el caudal pedido es de $\dfrac{5000 \, \text{dm}^3}{5 \, \text{s}}$, es decir, $10^3 \, \dfrac{\text{dm}^3}{s}$

Teniendo en cuenta que $1 \, \text{dm}^3$ de volumen equivale a $1 \, \text{L}$ de capacidad, el canal aporta $10^3 \, \dfrac{\text{L}}{s}$, y como la capacidad de la balsa de riego es $5 \cdot 10^6 \, \text{L}$, se necesitan $$\dfrac{5 \cdot 10 ^6}{10^3} \, \dfrac{\text{L}}{\text{L}/\text{s}} = 5000 \, \text{s}$$ para llenarla, que, expresado en forma compleja, es igual a $$3 \, \text{h} \; 28 \, \text{min} \; 20 \, \text{s}$$.
$\square$

[nota del autor]

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios