domingo, 21 de julio de 2024

Acerca de la deducción de las fórmulas para resolver ecuaciones polinómicas de segundo grado

¿De dónde sale el $\pm$ delante de la raíz cuadrada al despejar la incógnita elevada al cuadrado en una ecuación del tipo $x^2=k$ (siendo, desde luego, $k$ un número real no negativo)?

Vamos a resolver la ecuación y enseguida entenderemos el por qué:
  $x^2=k$
    $x^2-k=0$
      $x^2-(\sqrt{k})^2=0$
        $(x-\sqrt{k})(x+\sqrt{k})=0$, por la identidad notable $a^2-b^2=(a-b)(a+b)$
Entonces,
        $(x-\sqrt{k})(x+\sqrt{k})=0 \Leftrightarrow \left\{\begin{matrix}x-\sqrt{k}=0 \Rightarrow x=\sqrt{k}\\ x+\sqrt{k}=0 \Rightarrow x=-\sqrt{k} \end{matrix}\right.\quad (1)$

---
Nota: Hay que tener en cuenta que la raíz cuadrada de un número no negativo tiene como imagen (por consenso) un número no negativo (si bien es cierto que el cuadrado del opuesto de tal número (que es negativo) también es igual a dicho cuadrado.
---
Pues bien, para expresar el resultado de $(2)$ de manera escueta podemos escribir que $$x=\pm\sqrt{k}$$

-oOo-

Comentario: Esto nos lleva a entender perfectamente la razón por la cual aparece ese $\pm$ en la famosa fórmula de las ecuaciones de segundo grado completas, $a\,x^2+b\,x+c=0$, siendo los coeficientes $a$, $b$ y $c$ distintos de cero, esto es, $x=\dfrac{-b\pm \sqrt{b^2-4\,a\,c}}{2\,a}$. Lo explico a continuación, deduciendo dicha fórmula, paso a paso:
  $a\,x^2+b\,x+c=0$
    $\dfrac{1}{a}\,(a\,x^2+b\,x+c)+\dfrac{1}{a}\cdot 0$
      $\dfrac{1}{a}\cdot a\,x^2+\dfrac{1}{a}\cdot b\,x+\dfrac{1}{a}\cdot c=0$
        $x^2+\dfrac{b}{a}\,x+\dfrac{c}{a}=0$
          $\left(x+\dfrac{b}{2a}\right)^2-\left(\dfrac{b}{2\,a}\right)^2+\dfrac{c}{a}=0$, donde hemos tenido en cuenta la identidad $(m+n)^2=m^2+2\,m\,n+n^2$
            $\left(x+\dfrac{b}{2a}\right)^2-\left(\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}\right)=0$
              $\left(x+\dfrac{b}{2a}\right)^2-\left(\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}\right)^2=0$
                $\left(\left(x+\dfrac{b}{2a}\right)-\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}\right)\,\left(\left(x+\dfrac{b}{2a}\right)+\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}\right)=0 \Leftrightarrow$
                  $\Leftrightarrow \left\{\begin{matrix}\left(x+\dfrac{b}{2a}\right)-\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}=0 \Rightarrow x+\dfrac{b}{2a} = \sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}} \\ \left(x+\dfrac{b}{2a}\right)+\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}=0 \Rightarrow x+\dfrac{b}{2a} = -\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}} \end{matrix}\right.$
esto es, $$x+\dfrac{b}{2a} = \pm \sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}$$ y por tanto,
  $x=-\dfrac{b}{2a} \pm \sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}=$
    $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{(2\,a)^2}-\dfrac{c}{a}}$
      $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{2^2\,a^2}-\dfrac{c}{a}}$
        $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{4\,a^2}-\dfrac{c}{a}}$
          $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{4\,a^2}-\dfrac{4\,a}{4\,a} \cdot \dfrac{c}{a}}$
            $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{4\,a^2}-\dfrac{4\,a\,c}{4\,a^2}}$
              $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2-4\,a\,c}{4\,a^2}}$
                $=-\dfrac{b}{2a} \pm \dfrac{\sqrt{b^2-4\,a\,c}}{\sqrt{4\,a^2}}$
                  $=-\dfrac{b}{2a} \pm \dfrac{\sqrt{b^2-4\,a\,c}}{\sqrt{(2\,a)^2}}$
                    $=-\dfrac{b}{2a} \pm \dfrac{\sqrt{b^2-4\,a\,c}}{2\,a}$
                      $=\dfrac{-b \pm \sqrt{b^2-4\,a\,c}}{2\,a}$

$\diamond$

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios