Processing math: 100%

martes, 21 de abril de 2015

Depositamos una cierta cantidad de dinero a interés simple ... ( Artículo escrito en catalán )

Enunciat:
Considerem una quantitat C_{0} (donada en unitats monetàries arbitràries ) que cada determinat interval de temps produeix un benefici que calculem com una part proporcional d'aquesta quantitat inicial, que designem per i ( en tant per u ) i que anomenem taxa d'interès ( referida a l'interval de temps establert ). Quin és el valor de la quantitat acumulada C_n a l'n-èssim interval ? Quin benefici ( interès simple produeix aquesta quantitat C_0 en n intervals de temps iguals ?


Solució:
Al final del primer interval la quantitat C_0 s'ha convertit en C_0+C_0\,i
Al final del segon interval, trobem C_{0}+ C_0\,i+C_0\,i=C_0+2\,C_0\,i
Al final del tercer interval, C_0+2\,C_0\,i+C_0\,i=C_0+3\,C_0\,i
i així successivament fins al final de l'n-èssim interval ( d'acord amb la regla de formació del valor dels termes d'una successió aritmètica ), en què queda acumulada la quantitat C_n=C_{0}+ n\,C_0\,i
Per tant, el benefici ( que recordem que s'anomena interès simple i que designarem per I ) és igual a
\big( C_{0}+ n\,C_0\,i \big) - C_0
i, simplificant, queda
I=n\,C_{0}\,i
\square

[nota del autor]

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios