Processing math: 100%

viernes, 17 de abril de 2015

Resolver la siguiente ecuación ... ( Artículo escrito en catalán )

Enunciat:
Resoleu la següent equació de segon grau:
    x^2+\dfrac{1}{6}\,x-\dfrac{1}{3}=0

Enunciat:
Multiplicant a cada costat de l'igual per 6 arribem a una equació equivalent més senzilla
    6\,x^2+x-2=0
de coeficients a=6, b=1 i c=-2
Llavors, per la fórmula de la solució de l'equació general completa:
    x=\dfrac{-b\pm \sqrt{\Delta}}{2\,a}
on el discriminant \Delta
    es calcula fent b^2-4\,a\,c
Trobem que
    \Delta = -1 - 4\cdot 6 \cdot (-2)=49
    que és més gran que zero, per tant, hi haurà dos valors diferents com a solució:
    x=\dfrac{-1\pm \sqrt{49}}{12}=\dfrac{-1 \pm 7}{12}\left\{\begin{matrix} \dfrac{1}{2}\\ \\-\dfrac{2}{3} \end{matrix}\right.
\square

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios